A Lorentzian analog for Hausdorff dimension and measure
نویسندگان
چکیده
We define a one-parameter family of canonical volume measures on Lorentzian (pre-)length spaces. In the setting, this allows us to geometric dimension - akin Hausdorff for metric spaces that distinguishes between e.g. spacelike and null subspaces Minkowski spacetime. The measure corresponding its gives natural reference synthetic or limiting spacetime, what it means such spacetime be collapsed (in analogy with geometry theory Riemannian Ricci limit spaces). As crucial tool we introduce doubling condition causal diamonds notion measures. Moreover, applications continuous spacetimes connections timelike curvature bounds are given.
منابع مشابه
Hausdorff Dimension and Hausdorff Measure for Non-integer based Cantor-type Sets
We consider digits-deleted sets or Cantor-type sets with β-expansions. We calculate the Hausdorff dimension d of these sets and show that d is continuous with respect to β. The d-dimentional Hausdorff measure of these sets is finite and positive.
متن کاملUniversal Measure Zero, Large Hausdorff Dimension, and Nearly Lipschitz Maps
We prove that each analytic set in R contains a universally null set of the same Hausdorff dimension and that each metric space contains a universally null set of Hausdorff dimension no less than the topological dimension of the space. Similar results also hold for universally meager sets. An essential part of the construction involves an analysis of Lipschitzlike mappings of separable metric s...
متن کاملInvariant Sets with Zero Measure and Full Hausdorff Dimension
For a subshift of finite type and a fixed Hölder continuous function, the zero measure invariant set of points where the Birkhoff averages do not exist is either empty or carries full Hausdorff dimension. Similar statements hold for conformal repellers and two-dimensional horseshoes, and the set of points where the pointwise dimensions, local entropies, Lyapunov exponents, and Birkhoff averages...
متن کاملA Lorentzian Gromov-Hausdorff notion of distance
This paper is the first of three in which I study the moduli space of isometry classes of (compact) globally hyperbolic spacetimes (with boundary). I introduce a notion of Gromov-Hausdorff distance which makes this moduli space into a metric space. Further properties of this metric space are studied in the next papers. The importance of the work can be situated in fields such as cosmology, quan...
متن کاملHausdorff Dimension For Dummies
phenomena in two dimensions. I spent most of the academic years 2013-2015 in Bonn, Germany (at the Max-Planck Institut and then the Hausdorff Center). In general, the Hausdorff dimension of a product is at least the sum of the dimensions of the two spaces. Does equality hold if one space is Euclidian? So let be. I find this discussion in Wikipedia very good: Fractal dimension Imagine a particul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and applied analysis
سال: 2022
ISSN: ['2578-5893', '2578-5885']
DOI: https://doi.org/10.2140/paa.2022.4.367